Биосинтез пуриновых нуклеотидов

21.Распад пуриновых нуклеотидов. Образование мочевой кислоты. Распад пуриновых нуклеотидов может происходить различными путями. Свободный аденин и аденин в составе нуклеотидов дезаминируются, превращаясь в гипоксантин и далее в ксантин (2,6-диоксипурин), который под действием фермента ксантиноксидазы преобразуется в мочевую кислоту. Ксантин образуется и в процессе дезаминирования гуанина. У человека и приматов мочевая кислота является конечным продуктом П. о. и выводится с мочой. Млекопитающие, кроме приматов, выделяют аллантоин — продукт окисления мочевой кислоты, а костистые рыбы — продукт гидратирования аллантоина — аллантоевую кислоту. У амфибий и большинства рыб она гидролизуется до мочевины и глиоксилата.

К наиболее важным нарушениям П. о. относятся избыточное образование и накопление мочевой кислоты, например при подагре (Подагра) и синдроме Леша — Найхана. В основе последнего лежит наследственная недостаточность фермента гипоксантинфосфатидилтрансферазы, вследствие чего свободные пурины не используются повторно, а окисляются в мочевую кислоту. У детей с синдромом Леши — Найхана отмечаются воспалительные и дистрофические изменения. обусловленные отложением в тканях кристаллов мочевой кислоты: заболевание характеризуется задержкой умственного и физического развития. Из других пуриновых оснований, обнаруженных у человека, следует упомянуть метаболических предшественников мочевой кислоты: аминопурины — гуанин, аденин — и оксипурины — гипоксантин, ксантин.

В настоящее время доказаны три основных пути образования мочевой кислоты в организме: а) из пуринов, освобождающихся при тканевом распаде; б) из пуринов, содержащихся в пище; в) из синтетически образуемых пуринов.

Путь образования мочевой кислоты принципиально аналогичен первому с той разницей, что в этом случае пуринсодержащие соединения, превращение которых дает мочевую кислоту, имеют алиментарную природу. При этом отщепление белка от нуклеопротеида начинается в желудке под действием соляной кислоты с пепсином и заканчивается в кишечнике под воздействием трипсина. Образующиеся нуклеиновые кислоты под влиянием ферментов поджелудочной железы и кишечного сока — рибонуклеазы и дезоксирибонуклеазы — распадаются до мононуклеотидов. Последние под действием нуклеотидаз и нуклеозидаз кишечного сока расщепляются соответственно до нуклеозидов и азотистых оснований. Те и другие, а также и часть мононуклеотидов подвергаются всасыванию в кишечнике.

Третий путь образования мочевой кислоты в организме, установленный с помощью изотопов С14 и N15 и др., идет через синтез пуриновых производных, в котором принимают участие глицин, муравьиная и аспарагиновая кислоты, глютамин, углекислый газ.



22.Распад пиримидиновых нуклеотидов. Распад пиримидиновых нуклеотидов начинается с отщепления от них остатка фосфорной кислоты, катализируемого нуклеотидазами. Образовавшиеся нуклеозиды далее расщепляются фосфоролитически с образованием (дезокси)рибозофосфатов и свободных пиримидиновых азотистых оснований. Цитозин подвергается дезаминированию, предшествующему дальнейшей деградации. Для распада пиримидиновых оснований характерен восстановительный путь с последующим размыканием пиримидинового кольца. Из урацила образуется аминокислота β-аланин, из тимина — β-аминоизомасляная кислота, углекислый газ и аммиак. Аминокислоты — продукты деградации пиримидинов — далее могут вступать в разнообразные реакции обмена веществ (см. Азотистый обмен).

Поскольку интенсивность синтеза нуклеиновых кислот регулируется на стадии синтеза пиримидиновых нуклеотидов, П. о. оказывает существенное влияние наобмен нуклеиновых кислот. Один из путей регуляции синтеза пиримидиновых нуклеотидов — ингибирование по механизму обратной связи: избыток ЦТФ — конечного продукта биосинтетических процессов П. о. аллостерически ингибируетфермент, катализирующий синтез карбамоиласпартата (первую реакцию биосинтеза пиримидинов). Пиримидиновые нуклеотиды ингибируют также синтез ряда ферментов пиримидинового обмена.

В быстрорастущих тканях активность ферментов распада пиримидиновых нуклеотидов чрезвычайно низкая; активность ферментов их синтеза (аспартат-карбамоилтрансферазы и др.) резко возрастает в быстро делящихся тканях, например в ткани печени после частичной гепатэктомии.

Генетическое нарушение П. о. может быть причиной наследственных заболеваний, например оротацидурии, при которой наблюдается избыточное выделение с мочой продукта деградации пиримидиновых оснований — оротовой кислоты. Пернициозная анемия сопровождается существенными нарушениями пиримидинового обмена (см.Анемии), а лечебное действие витамина В12 и фолиевой кислоты (см. Витамины) при анемиях обусловлено участием производных этих витаминов в качестве коферментов в реакциях синтеза пиримидиновых оснований.




0391111779506175.html
0391155511447967.html
    PR.RU™